Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3264, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627405

RESUMO

A long-standing challenge in bioinspired materials is to design and synthesize synthetic materials that mimic the sophisticated structures and functions of natural biomaterials, such as helical protein assemblies that are important in biological systems. Herein, we report the formation of a series of nanohelices from a type of well-developed protein-mimetics called peptoids. We demonstrate that nanohelix structures and supramolecular chirality can be well-controlled through the side-chain chemistry. Specifically, the ionic effects on peptoids from varying the polar side-chain groups result in the formation of either single helical fiber or hierarchically stacked helical bundles. We also demonstrate that the supramolecular chirality of assembled peptoid helices can be controlled by modifying assembling peptoids with a single chiral amino acid side chain. Computational simulations and theoretical modeling predict that minimizing exposure of hydrophobic domains within a twisted helical form presents the most thermodynamically favorable packing of these amphiphilic peptoids and suggests a key role for both polar and hydrophobic domains on nanohelix formation. Our findings establish a platform to design and synthesize chiral functional materials using sequence-defined synthetic polymers.


Assuntos
Peptoides , Peptoides/química , Aminoácidos
2.
Nanoscale Horiz ; 9(4): 504-505, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38376429

RESUMO

This article highlights the recent work of Slater, Palmer, et al. (Nanoscale Horiz., 2024, 9, 143-147, https://doi.org/10.1039/D3NH00291H) on using electron microscopy to observe the structural fluctuations of individual Au nanoclusters directly.

3.
Nat Mater ; 23(3): 424-428, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919350

RESUMO

In principle, designing and synthesizing almost any class of colloidal crystal is possible. Nonetheless, the deliberate and rational formation of colloidal quasicrystals has been difficult to achieve. Here we describe the assembly of colloidal quasicrystals by exploiting the geometry of nanoscale decahedra and the programmable bonding characteristics of DNA immobilized on their facets. This process is enthalpy-driven, works over a range of particle sizes and DNA lengths, and is made possible by the energetic preference of the system to maximize DNA duplex formation and favour facet alignment, generating local five- and six-coordinated motifs. This class of axial structures is defined by a square-triangle tiling with rhombus defects and successive on-average quasiperiodic layers exhibiting stacking disorder which provides the entropy necessary for thermodynamic stability. Taken together, these results establish an engineering milestone in the deliberate design of programmable matter.


Assuntos
DNA , DNA/genética , DNA/química , Termodinâmica
4.
Sci Adv ; 9(51): eadj6129, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134271

RESUMO

Coupling plasmonic and functional materials provides a promising way to generate multifunctional structures. However, finding plasmonic nanomaterials and elucidating the roles of various geometric and dielectric configurations are tedious. This work describes a combinatorial approach to rapidly exploring and identifying plasmonic heteronanomaterials. Symmetry-broken noble/non-noble metal particle heterojunctions (~100 nanometers) were synthesized on multiwindow silicon chips with silicon nitride membranes. The metal types and the interface locations were controlled to establish a nanoparticle library, where the particle morphology and scattering color can be rapidly screened. By correlating structural data with near- and far-field single-particle spectroscopy data, we found that certain low-energy plasmonic modes could be supported across the heterointerface, while others are localized. Furthermore, we found a series of triangular heteronanoplates stabilized by epitaxial Moiré superlattices, which show strong plasmonic responses despite largely comprising a lossy metal (~70 atomic %). These architectures can become the basis for multifunctional and cost-effective plasmonic devices.

5.
Adv Mater ; 35(11): e2205923, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36205651

RESUMO

The stability, reliability, and performance of halide-perovskite-based devices depend upon the structure, composition, and particle size of the device-enabling materials. Indeed, the degree of ion mixing in multicomponent perovskite crystals, although challenging to control, is a key factor in determining properties. Herein, an emerging method termed evaporation-crystallization polymer pen lithography is used to synthesize and systematically study the degree of ionic mixing of Cs0.5 FA0.5 PbX3 (FA = formamidinium; X = halide anion, ABX3 ) crystals, as a function of size, temperature, and composition. These experiments have led to the discovery of a heterostructure morphology where the A-site cations, Cs and FA, are segregated into the core and edge layers, respectively. Simulation and experimental results indicate that the heterostructures form as a consequence of a combination of both differences in solubility of the two ions in solution and the enthalpic preference for Cs-FA ion segregation. This preference for segregation can be overcome to form a solid-solution by decreasing crystal size (<60 nm) or increasing temperature. Finally, these tools are utilized to identify and synthesize solid-solution nanocrystals of Cs0.5 FA0.5 Pb(Br/I)3 that significantly suppress photoinduced anion migration compared to their bulk counterparts, offering a route to deliberately designed photostable optoelectronic materials.

7.
ACS Nano ; 16(12): 20796-20804, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36219780

RESUMO

A library of compositionally and structurally well-defined Au-Cu alloy nanocrystals has been prepared via scanning probe block copolymer lithography. These libraries not only allow one to map compositional and structure space but also the conditions (e.g., cooling rate) required to access specific structures. This approach enabled the realization of a previously unobserved architecture, an intermetallic nanoprism, that is a consequence of hierarchical atom stacking. These structures exhibit distinctive diffraction patterns characterized by non-integer-index, forbidden spots, which serve as a diagnostic indicator of such structures. Inspection of the library's pseudospherical particles reveals a high-strain cubic-tetragonal interfacial configuration in the outer regions of the intermetallic nanocrystals. Since it is costly and time-consuming to explore the nanomaterials phase space via conventional wet-chemistry, this parallel kinetic-control approach, which relies on substrate- and positionally isolated particles, may lead to the rapid discovery of complex nanocrystals that may prove useful in applications spanning catalysis and plasmonic sensing.

8.
Nat Mater ; 21(5): 580-587, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35027717

RESUMO

Colloidal crystal engineering of complex, low-symmetry architectures is challenging when isotropic building blocks are assembled. Here we describe an approach to generating such structures based upon programmable atom equivalents (nanoparticles functionalized with many DNA strands) and mobile electron equivalents (small particles functionalized with a low number of DNA strands complementary to the programmable atom equivalents). Under appropriate conditions, the spatial distribution of the electron equivalents breaks the symmetry of isotropic programmable atom equivalents, akin to the anisotropic distribution of valence electrons or coordination sites around a metal atom, leading to a set of well-defined coordination geometries and access to three new low-symmetry crystalline phases. All three phases represent the first examples of colloidal crystals, with two of them having elemental analogues (body-centred tetragonal and high-pressure gallium), while the third (triple double-gyroid structure) has no known natural equivalent. This approach enables the creation of complex, low-symmetry colloidal crystals that might find use in various technologies.


Assuntos
Elétrons , Nanopartículas , Anisotropia , DNA/química , Engenharia , Nanopartículas/química
9.
Small ; 17(17): e2007287, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33719180

RESUMO

Several transition-metal oxides and hydroxides based on earth-abundant elements, such as Fe, Ni, and Co, have emerged as a new generation of oxygen evolution reaction (OER) catalysts due to their low cost, favorable activity, and multifunctional behavior. However, the relatively complicated surface structuring methods, high Tafel slope, and low stability hinder their practical applications to replace the conventional Ir- and Ru-based catalysts. Herein, a strategy to construct hierarchically architected mixed oxides on conductive substrates (e.g., ITO and Ni foam) via a nanosheet (NS) deposition and subsequent bidirectional nanomodification approach, with metal salts in an aprotic polar solvent (e.g., acetone) as the primary modifying reactants is reported. This strategy is used to prepare NiO-based NSs with nanopores, nanobranches, or a combination of both, containing up to four transition metal elements. Record-low Tafel slope (22.3 mV·dec-1 , ≈lowest possible by computational predictions) and week-long continuous operation durability are achieved by FeMnNi-O NSs supported on Ni foams. Taken together, properly designed hierarchical mixed oxide electrodes may provide a cost-effective route to generating high, reliable, and stable OER catalytic activities, paving the way for both new electrocatalyst design and practical water-splitting devices.

10.
Angew Chem Int Ed Engl ; 60(13): 6858-6863, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33559957

RESUMO

The structure of multiply twinned particles (MTPs) provides an example of how specific crystallographic features dictate the geometric shape of finite-sized crystals. The formation of MTPs during colloidal synthesis can occur through at least two different pathways: 1) growth from multiply twinned seeds or 2) the stepwise formation of new twin boundaries on single-crystalline seeds (either by particle overgrowth or multiparticle attachment). By utilizing in situ transmission electron microscopy, recent studies have provided real-time evidence for both pathways. Looking forward, the knowledge of specific evolution pathways that occur under a given synthetic condition will aid in the design of robust MTP syntheses. More importantly, further studies pertaining to the structural evolution and energetics of nanoparticles are needed to provide a complete understanding of MTP formation pathways.

11.
Adv Mater ; 32(47): e2005316, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33089533

RESUMO

Colloidal crystals have emerged as promising candidates for building optical microdevices. Techniques now exist for synthesizing them with control over their nanoscale features (e.g., particle compositions, sizes, shapes, and lattice parameters and symmetry); however, the ability to tune macroscale structural features, such as the relative positions of crystals to one another and lattice orientations, has yet to be realized. Here, inspiration is drawn from epitaxial growth strategies in atomic crystallization, and patterned substrates are prepared that, when used in conjunction with DNA-mediated nanoparticle crystallization, allow for control over individual Wulff-shaped crystal growth, location, and orientation. In addition, the approach allows exquisite control over the patterned substrate/crystal lattice mismatch, something not yet realized for any epitaxy process. This level of structural control is a significant step toward realizing complex, integrated devices with colloidal crystal components, and this approach provides a model system for further exploration in epitaxy systems.


Assuntos
DNA/química , Elétrons , Engenharia , Coloides , Modelos Moleculares , Nanopartículas/química , Conformação de Ácido Nucleico
12.
Sci Adv ; 6(39)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32967836

RESUMO

Halide perovskites have exceptional optoelectronic properties, but a poor understanding of the relationship between crystal dimensions, composition, and properties limits their use in integrated devices. We report a new multiplexed cantilever-free scanning probe method for synthesizing compositionally diverse and size-controlled halide perovskite nanocrystals spanning square centimeter areas. Single-particle photoluminescence studies reveal multiple independent emission modes due to defect-defined band edges with relative intensities that depend on crystal size at a fixed composition. Smaller particles, but ones with dimensions that exceed the quantum confinement regime, exhibit blue-shifted emission due to reabsorption of higher-energy modes. Six different halide perovskites have been synthesized, including a layered Ruddlesden-Popper phase, and the method has been used to prepare functional solar cells based on single nanocrystals. The ability to pattern arrays of multicolor light-emitting nanocrystals opens avenues toward the development of optoelectronic devices, including optical displays.

13.
J Am Chem Soc ; 142(16): 7350-7355, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32281796

RESUMO

A novel method for synthesizing arrays of uniform sub-2 nm particles on substrates is described. Such particles are made by (i) using dip-pen nanolithography to prepare nanoreactors consisting of metal-coordinated polymers; (ii) designing polymers with only one metal atom attached to each polymer chain; (iii) systematically controlling nanoreactor volume down to the yoctoliter scale; and (iv) transforming each nanoreactor into a metal nanoparticle through thermal annealing. Polymer design in this study is crucial, since it allows one to tightly control nanoparticle size by tuning the volume of the polymer reactors, which correlates with the number of polymer chains and, therefore, metal atoms. Mixtures of different metal-functionalized polymers were used to synthesize ultrasmall alloy particles. The technique and results described herein point toward a way of using these novel polymers to systematically explore the properties and uses of this important class of nanomaterials in many fields.

14.
Adv Mater ; 32(8): e1906600, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31944429

RESUMO

A novel method for synthesizing and photopatterning colloidal crystals via light-responsive DNA is developed. These crystals are composed of 10-30 nm gold nanoparticles interconnected with azobenzene-modified DNA strands. The photoisomerization of the azobenzene molecules leads to reversible assembly and disassembly of the base-centered cubic (bcc) and face-centered cubic (fcc) crystalline nanoparticle lattices. In addition, UV light is used as a trigger to selectively remove nanoparticles on centimeter-scale thin films of colloidal crystals, allowing them to be photopatterned into preconceived shapes. The design of the azobenzene-modified linking DNA is critical and involves complementary strands, with azobenzene moieties deliberately staggered between the bases that define the complementary code. This results in a tunable wavelength-dependent melting temperature (Tm ) window (4.5-15 °C) and one suitable for affecting the desired transformations. In addition to the isomeric state of the azobenzene groups, the size of the particles can be used to modulate the Tm window over which these structures are light-responsive.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Raios Ultravioleta , Compostos Azo/química , Ouro/química , Espalhamento a Baixo Ângulo , Temperatura de Transição , Difração de Raios X
15.
J Am Chem Soc ; 141(51): 20443-20450, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31840989

RESUMO

Colloidal crystal engineering with DNA has emerged as a powerful tool for precisely controlling the arrangement of nanoscale building blocks in three-dimensional superlattices, where nanoparticles densely modified with DNA can be viewed as "programmable atom equivalents" (PAEs). Although a wide variety of complementary DNA-modified nanoparticles, differentiated by size, shape, and composition, have been assembled into many "ionic" phases, the predictable formation of "alloy" phases remains elusive. Here, we describe the design of "colloidal crystal alloys" by combining gold PAEs of two different sizes (core diameters ranging from 5 to 40 nm) with complementary DNA-modified 2 nm gold nanoparticles (∼15 DNA strands/particle) that act as electron equivalents (EEs). Electron microscopy and small-angle X-ray scattering (SAXS) experiments reveal the formation of four classes of colloidal alloy equivalents: interstitial, substitutional, phase-separated, and intermetallic alloys. In these colloidal alloy phases, PAEs occupy lattice positions, while EEs stabilize the PAE lattice but do not occupy specific lattice sites. A set of chemical design guidelines emerge from this study, analogous to that of the Hume-Rothery rules, allowing for programmed synthesis of different alloy phases depending on PAE particle size ratio, DNA surface coverage, stoichiometric ratio, and thermal annealing pathways. Furthermore, we study the phase separation process via in situ SAXS experiments as well as ex situ electron microscopy, revealing the critical role of kinetics on the phase behavior in these systems.

16.
Science ; 364(6446): 1174-1178, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31221857

RESUMO

A versatile method for the design of colloidal crystals involves the use of DNA as a particle-directing ligand. With such systems, DNA-nanoparticle conjugates are considered programmable atom equivalents (PAEs), and design rules have been devised to engineer crystallization outcomes. This work shows that when reduced in size and DNA grafting density, PAEs behave as electron equivalents (EEs), roaming through and stabilizing the lattices defined by larger PAEs, as electrons do in metals in the classical picture. This discovery defines a new property of colloidal crystals-metallicity-that is characterized by the extent of EE delocalization and diffusion. As the number of strands increases or the temperature decreases, the EEs localize, which is structurally reminiscent of a metal-insulator transition. Colloidal crystal metallicity, therefore, provides new routes to metallic, intermetallic, and compound phases.

17.
Science ; 363(6430): 959-964, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819959

RESUMO

Nanomaterials that form as heterostructures have applications in catalysis, plasmonics, and electronics. Multielement nanoparticles can now be synthesized through a variety of routes, but how thermodynamic phases form in such structures and how specific interfaces between them can be designed and synthesized are still poorly understood. We explored how palladium-tin alloys form mixed-composition phases with metals with known but complex miscibilities. Nanoparticles with up to seven elements were synthesized, and many form triphase heterostructures consisting of either three-interface or two-interface architectures. Density functional theory calculations and experimental work were used to determine the balance between the surface and interfacial energies of the observed phases. From these observations, design rules have been established for making polyelemental systems with specific heterostructures, including tetraphase nanoparticles with as many as six junctions.

19.
Proc Natl Acad Sci U S A ; 116(1): 40-45, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559201

RESUMO

The nanomaterial landscape is so vast that a high-throughput combinatorial approach is required to understand structure-function relationships. To address this challenge, an approach for the synthesis and screening of megalibraries of unique nanoscale features (>10,000,000) with tailorable location, size, and composition has been developed. Polymer pen lithography, a parallel lithographic technique, is combined with an ink spray-coating method to create pen arrays, where each pen has a different but deliberately chosen quantity and composition of ink. With this technique, gradients of Au-Cu bimetallic nanoparticles have been synthesized and then screened for activity by in situ Raman spectroscopy with respect to single-walled carbon nanotube (SWNT) growth. Au3Cu, a composition not previously known to catalyze SWNT growth, has been identified as the most active composition.


Assuntos
Catálise , Nanoestruturas/química , Bibliotecas de Moléculas Pequenas , Cobre/química , Ligas de Ouro/química , Ensaios de Triagem em Larga Escala , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Análise Espectral Raman
20.
J Am Chem Soc ; 140(23): 7213-7221, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29856627

RESUMO

The interactions between nanoparticles and solvents play a critical role in the formation of complex, metastable nanostructures. However, direct observation of such interactions with high spatial and temporal resolution is challenging with conventional liquid-cell transmission electron microscopy (TEM) experiments. Here, a windowless system consisting of polymer nanoreactors deposited via scanning probe block copolymer lithography (SPBCL) on an amorphous carbon film is used to investigate the coarsening of ultrafine (1-3 nm) Au-Pt bimetallic nanoparticles as a function of solvent evaporation. In such reactors, homogeneous Au-Pt nanoparticles are synthesized from metal-ion precursors in situ under electron irradiation. The nonuniform evaporation of the thin polymer film not only concentrates the nanoparticles but also accelerates the coalescence kinetics at the receding polymer edges. Qualitative analysis of the particle forces influencing coalescence suggests that capillary dragging by the polymer edges plays a significant role in accelerating this process. Taken together, this work (1) provides fundamental insight into the role of solvents in the chemistry and coarsening behavior of nanoparticles during the synthesis of polyelemental nanostructures, (2) provides insight into how particles form via the SPBCL process, and (3) shows how SPBCL-generated domes, instead of liquid cells, can be used to study nanoparticle formation. More generally, it shows why conventional models of particle coarsening, which do not take into account solvent evaporation, cannot be used to describe what is occurring in thin film, liquid-based syntheses of nanostructures.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Platina/química , Polietilenoglicóis/química , Polivinil/química , Cinética , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...